Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures
نویسندگان
چکیده
Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm-2 and a turnover frequency of 4.1 s-1 at the overpotential of 0.52 V in a near-neutral aqueous solution.
منابع مشابه
Solid phase extraction of trace cobalt (II) in industrial wastewaters by modified nanotube carbon carboxyl and its determination with flame atomic spectroscopy
Applying a simple and selective sample preparation procedure prior to instrumental analysis is the most important and crucial step in an analytical process. Up to now, various sample preparation techniques based on solid phase extraction (SPE) systems have been developed to isolate various types of analytes from different matrices. In the method presented for preconcentration and measurement of...
متن کاملSolid phase extraction of trace cobalt (II) in industrial wastewaters by modified nanotube carbon carboxyl and its determination with flame atomic spectroscopy
Applying a simple and selective sample preparation procedure prior to instrumental analysis is the most important and crucial step in an analytical process. Up to now, various sample preparation techniques based on solid phase extraction (SPE) systems have been developed to isolate various types of analytes from different matrices. In the method presented for preconcentration and measurement of...
متن کاملDesign and Preparation of Electrocatalysts Based on Ordered Mesoporous Carbons for Oxygen Reduction Reaction
The research presented in this dissertation is aimed at the development of electrocatalysts for the oxygen reduction reaction (ORR) based on ordered mesoporous carbons (OMCs). The ORR is a key reaction in electrochemical energy devices such as fuel cells and metal-air batteries. Because of its sluggish kinetics compared to its counterpart reaction (i.e., hydrogen oxidation reaction in fuel cell...
متن کاملPolymer coordination promotes selective CO2 reduction by cobalt phthalocyanine† †Electronic supplementary information (ESI) available: Representative cyclic voltammograms of modified electrodes, representative current–time plots from controlled potential electrolyses, and tabulated results from control experiments. See DOI: 10.1039/c5sc04015a Click here for additional data file.
متن کامل
Palladium-cobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation.
PdCo nanotube arrays (NTAs) supported on carbon fiber cloth (CFC) (PdCo NTAs/CFC) are presented as high-performance flexible electrocatalysts for ethanol oxidation. The fabricated flexible PdCo NTAs/CFC exhibits significantly improved electrocatalytic activity and durability compared with Pd NTAs/CFC and commercial Pd/C catalysts. Most importantly, the PdCo NTAs/CFC shows excellent flexibility ...
متن کامل